
ANGLEr blueprints and design RSDO DS3 A3.2, Deliverable R3.1.2

ANGLEr: A General Extensible Data Model and (Web-based)

Tool for Text Analysis and Exploration

Slavko Žitnik, Timotej Knez

February 27, 2023

Abstract

Natural language processing is used for solving a wide variety of problems. Some scholars and
interest groups working with language resources are not well versed in programming, so there is a
need for a good graphical framework that allows users to quickly design and test natural language
processing pipelines without the need for programming. The existing frameworks do not satisfy all
the requirements for such a tool. We therefore propose a new framework that provides a simple way
for its users to build language processing pipelines. It also allows a simple programming language
agnostic way for adding new modules, which will help the adoption by natural language processing
developers and researchers. The main parts of the proposed framework consist of (a) a pluggable
Docker-based architecture, (b) general data model, and (c) APIs description along with the graphical
user interface. The proposed design is being used for implementation of a new natural language
processing framework, that we will call ANGLEr, based on our initial explorations [8].

1 Introduction

Within the project “Development of Slovene in a Digital Environment” we planned to create blueprints
for a general (Web-based) tool for text analysis. The deliverable focus is on extensibility and a general
data model that would support a number of text processing tasks. The concrete goal is as follows:
“Izdelali bomo načrt in zasnovo (spletnega) orodja za izvajanje analiz nad besedili po vzoru orodij kot
so GATE, UIMA oz. idejno zastavljen model nutIE. Poudarek orodja bo predvsem na razširljivosti in
podatkovnem modelu za predstavitev podatkov. Namen orodja bo zagotoviti lažjo uporabo razvitih
orodij za netehnične uporabnike. Le ti bodo lahko uvozili lastne podatke oz. korpus, zaporedno izvajali
posamezne analize procesiranja naravnega jezika in evalvirali ter predstavili rezultate na grafičen način.”

The area of natural language processing (NLP) is used in a wide variety of applications. NLP tools
are used by people from various backgrounds. In order for the users outside the computer science area to
use the available tools effectively, we have to provide them with an intuitive graphical user interface that
allows a simplified construction of text processing pipelines. We also need to enable the NLP researchers
to showcase their projects by including them in our framework with very little additional effort. In the
past, a number of frameworks for simplifying NLP workflows were designed. However, most of them fall
short either in the expandability or the ease of use. In our work we identify the key components of such
framework and improve upon the existing frameworks by fixing the identified flaws.

In this report we propose:

1. a pluggable Docker-based architecture along with the APIs descriptions,

2. a general data model, and

3. extensible graphical user interface.

2 Existing frameworks review

A number of frameworks for natural language processing already exist out there. In this section we review
the most prospective frameworks in order to determine their strengths and weaknesses. This helps us to
define a list of features that could be improved by introducing a new framework and justify the need for
it. The comparison is summarized in Table 1.

1

ANGLEr blueprints and design RSDO DS3 A3.2, Deliverable R3.1.2

2.1 General Architecture for Text Engineering (GATE)

One of the best frameworks for text processing using a graphical interface to our knowledge is GATE [2]
(Figure 1). It was designed to feature a unified data model that supports a wide variety of language
processing tools. It also features a graphical user interface. While the GATE framework provides a
graphical way for pipeline construction, its interface has not been updated “in over 10 years”. The
program is thus easy to install but seems to be difficult to use for new users. The tool allows for creation
of custom additional plugins that need to be written using Java codebase. It already defines initial
processors but no recent tools are packaged as GATE plugins.

Figure 1: GATE tool user interface.

The tool is actively developed by The University of Sheffield with OntoText as a major contributor.
They also offer Cloud service with GATE Mimir search engine in their pricing tier. Their public list of
plugins contains some available NLP tools1.

2.2 Unstructured Information Management Applications (UIMA)

UIMA [4] (Figure 2) is a framework for extracting information from unstructured documents like text,
images, emails and so on. Apache UIMA is an Apache-licensed open source implementation of the
UIMA specification that is being developed concurrently by a technical committee within OASIS (a
standards organization). It features a data model that combines extracted information from all previous
components. The framework provides some graphical tools for running analysis on the source documents.
The graphical tools, however, are not combined into a single application and do not provide an easy
way for creating processing pipelines. The primary way of using UIMA still requires the user to edit
XML descriptor documents, which limits usability for new users and slows down the development. New
components for the framework can be written in the Java or the C++ programming languages.

UIMA enables applications to be decomposed into components, for example “language identifica-
tion” → “language specific segmentation” → “sentence boundary detection” → “entity detection (per-
son/place names etc.).” Each component implements interfaces defined by the framework and provides
self-describing metadata via XML descriptor files. The framework manages these components and the
data flow between them. Components are written in Java or C++ and the communication flows between
components is designed for efficient mapping between these languages. The components can be defined
as Web services and replicated over a cluster of nodes.

1https://cloud.gate.ac.uk/shopfront (Accessed: July 18, 2022).

2

https://cloud.gate.ac.uk/shopfront

ANGLEr blueprints and design RSDO DS3 A3.2, Deliverable R3.1.2

Figure 2: UIMA projects landscape.

The framework support configuring and running pipelines of Annotator components. These compo-
nents do the actual work of analyzing the unstructured information. Users can write their own annotators,
or configure and use pre-existing annotators. Some annotators are available as part of this project; others
are contained in various repositories on the internet. GitHub.com lists over 900 repositories that have
dependencies on the UIMA Java SDK core. Recent architecture supports REST communication between
components.

It is also important to mention that IBM’s Watson was built on their implementation of UIMA
architecture.

2.3 Orange - Data Mining Fruitful and Fun

Orange Data Mining tool [3] (Figure 3), developed at the University of Ljubljana, is one of the best and
multiple times awarded tools for building data mining pipelines. It is actively developed and regularly
updated. In the future releases a cloud-based version of the tool is expected to be released.

The main feature of the orange framework is a great user interface that is friendly even for non
technical users. Orange provides a variety of widgets designed for machine learning tasks and data
visualisation. Apart from that, it is possible to use Orange directly using a Python library which makes
it very accessible to technical users.

The framework was designed primarily to work with relational data for classic machine learning. It
supports two extensions for processing natural language which allow us to use the already existing machine
learning tools on text documents. The largest drawback when using Orange for text processing is that the
tabular representation, used for representing data, is not well suited for representing information needed
for text processing. The two extensions tackle this problem in different ways:

Orange text mining addon. (Figure 4) The addon is available to download and enable via Orange
user interface2. The addon implements Corpus and Documents type but it seems that tabular format is
still main representation, so that data can be compatible with existing widgets. Its biggest limitation is
that it only works with features on a document level, but there are options to transform the data.

2.4 Textable

Textable3 (Figure 4) seems to be a fork or Orange with additional implemented specifics for text pro-
cessing. It is also available as a regular Orange addon. The tool supports text files as text fields and it
has separate support for JSONs and URLs. Version 3 update also supports different text segments.

The tool was designed and implemented by LangTech Sarl on behalf of the department of language
and information sciences (SLI) at the University of Lausanne. Current it is not regularly updated.

2https://orange3-text.readthedocs.io/en/latest (Accessed: July 18, 2022).
3http://textable.io (Accessed: July 18, 2022).

3

https://orange3-text.readthedocs.io/en/latest
http://textable.io

ANGLEr blueprints and design RSDO DS3 A3.2, Deliverable R3.1.2

Figure 3: An example of the Orange user interface.

From the analysis perspective it offers quite some basic processors (e.g., basic text analysis, concor-
dances, collocations, document-term matrices, lemmatization, POS tagging,), connectors to 3rd-party
libraries (e.g., NLTK, Pattern, GenSim), and import functionality (e.g., HTML, CSV, XML files).

2.5 Natural language processing programming libraries

Multiple librariest that support text processing have been developed. Some of them are still very ac-
tive or have recently appeared. These libraries are commonly used by experts in the field of natural
language processing. They are not well suited for use by other people that might also be interested in
language processing. One of such libraries is called OpenNLP4. It supports the development of natural
language applications in the Java programming language. There are also multiple Python libraries, such
as NLTK [1] or Gobbli [11]. Gobbli is a library trying to simplify the use of deep learning in text process-
ing. Another popular library for natural language processing in Python is Stanza [12]. Stanza is being
developed at Stanford university and its main goal is to support a large number of languages. Recent
very popular library and tools containing many pretrained model is Huggingface5. Popular library in
industry is Spacy6

In order to use any of these libraries, the user is required to have some programming knowledge.
Writing a program is also a lot slower than constructing a pipeline through a graphical interface. Because
of that, we believe that a good graphical interface is one of the key features of such frameworks.

2.6 Side-by-side comparison

In Table 1 we compare reviewed frameworks along selected dimensions. As we can see, NLP libraries do
not fit most of the criteria, so we will not take them into account. All other frameworks support some level

4https://opennlp.apache.org (Accessed: July 18, 2022).
5https://huggingface.co (Accessed: July 18, 2022).
6https://spacy.io (Accessed: July 18, 2022).

4

https://opennlp.apache.org
https://huggingface.co
https://spacy.io

ANGLEr blueprints and design RSDO DS3 A3.2, Deliverable R3.1.2

Figure 4: Orange text mining addon (left) and Textable (right) widgets.

Framework Graphical UI Unified data model Plugin language
GATE Yes (Native) Yes (too general) Java
UIMA Yes (Limited) Yes Java or C++
Orange /w addons Yes (Native) Diverse (transformations available) Python
NLP Libraries No Diverse Java
ANGLEr Yes (Web) Yes (versioned) Arbitrary (Docker)

Table 1: Comparison of different natural language processing frameworks.

of graphical user interface and also programmatic access to the tools. Orange seems to provide the best
user-friendly and intuitive user interface of all. All three frameworks are available as native applications
while we propose Web-based framework that would require no installation. GATE and UIMA on the
other hand provide cloud-hosted Web services. All three frameworks are also “locked” into a specific
programming language. We propose a completely decoupled architecture, interconnected only via the
data model, so anyone can provide their functionalities in their own language. The same also holds for
new plugins development.

One of important aspects is also that the project offering main framework is alive. It seems that
Orange is the only one with a vibrant community, good legacy and therefore has best options to survive
longer.

3 Towards a common and general data model for natural lan-
guage processing tools

The data model should be as simple as possible. It seems that GATE and UIMA provide an overwhelming
data model that might be hard to understand. While GATE’s might be to general, UIMA’s is standard-
based. On the other hand, Orange provides a simple model but lacks text-based representation as

5

ANGLEr blueprints and design RSDO DS3 A3.2, Deliverable R3.1.2

“first-class citizen,” although it allows for simple transformations between data representations. Based
on the review we will try to propose as simple and general data model as possible.

Apart from the data models offered by GATE, UIMA and Orange, we will also include Stanza’s data
model (a NLP library that provides some common structure) and NIF standard. There exist also other
proposals such as CDA+GrAF [10] or International Standard for a Linguistic Annotation Framework [7]7

for which we found only a few usages and we do not consider including in the review.

3.1 NLP Interchange Format (NIF) data model

NIF [5] offered an RDF/OWL-based format that allows to combine and chain several NLP tools in a
flexible, light-weight way.

The core of NIF consists of a vocabulary, which can represent Strings as RDF resources. A special
URI Design is used to pinpoint annotations to a part of a document. These URIs can then be used to
attach arbitrary annotations to the respective character sequence. Based on these URIs, annotations can
be interchanged between different NLP tools.

The project does not seem actively maintained8 and not many works have applied this data model
(Figure 5) to their tools. The model merely focuses on strings and offers a structure of a fixed set of
representations, such as title, paragraph, phrase, sentence and word.

Figure 5: NIF 2.0 ontology schema representation.

We do not know exactly why the model might be obsolete, but there might be multiple reasons: (a)
community did not adopt the model, (b) the model is to general and does not support specific tools, or
(c) researchers do not want to use RDF overhead. Although we believe Semantic Web functionalities
would be an added value to the NLP annotations, it should be used when needed and not forced.

3.2 GATE data model

GATE implements multiple document formats in a Corpora Java class9 package. Examples of documents
are TikaFormat, JsonDocuments, EmailDocuments, UIMADocument or XMLDocument. Corpus is rep-

7https://www.cs.vassar.edu/~ide/papers/ISO+24612-2012.pdf (Accessed: July 18, 2022).
8https://github.com/NLP2RDF (Accessed: July 18, 2022).
9https://jenkins.gate.ac.uk/job/gate-core/javadoc/index.html (Accessed: July 19, 2022).

6

https://www.cs.vassar.edu/~ide/papers/ISO+24612-2012.pdf
https://github.com/NLP2RDF
https://jenkins.gate.ac.uk/job/gate-core/javadoc/index.html

ANGLEr blueprints and design RSDO DS3 A3.2, Deliverable R3.1.2

resented as a set of such documents. By default GATE transforms these documents into an internal
annotation-based GATE format. Documents are basically (a) content, (b) annotations, and (c) features.

Document defines an interface and each document must support generation of outputs to a GATE
XML. Each document can be represented as a list of annotations, where each annotation is defined by
start node, end node and type. Node is defined by id and offset.

Based on the above, a user can create its own schema or re-use an existing one10. In Table 2 we show
extracted annotations in a JSON format. As we can see, the format consists of different annotation types
- e.g., location, organization, ... We believe these are the same type of annotations and should have been
structured similar/hierarchicaly. Each of the token types we see contain a map for definition of features.

{

"tokens": [{

"start": 0,

"end": 0,

"id": 0,

"type": "",

"data": {

"category": "",

"kind": "",

"length": 0,

"orth": "",

"stirng": ""

}

}],

"location": [{

"start": 0,

"end": 0,

"id": 0,

"type": "",

"data": {

"locType": "",

"matches": [{

"id": 0

}],

"rule": ""

}

}],

"lookup": [{

"start": 0,

"end": 0,

"id": 0,

"type": "",

"data": {

"majorType": "",

"minorType": ""

}

}],

"organization": [{

"start": 0,

"end": 0,

"id": 0,

"type": "",

"data": {

"matches": [{

"id": 0

}],

"orgType": "",

"rule": ""

}

}],

"person": [{

"start": 0,

"end": 0,

"id": 0,

"type": "",

"data": {

"matches": [{

"id": 0

}],

"firstName": "",

"lastName": "",

"gender": "",

"rule": ""

}

}],

"split": [{

"start": 0,

"end": 0,

"id": 0,

"data": {

"kind": ""

}

}],

"sentence": [{

"start": 0,

"end": 0,

"id": 0,

"type": "",

"data": {

"id": 0

}

}],

"address": [{

"start": 0,

"end": 0,

"id": 0,

"type": "",

"data": {

"kind": "",

"rule": "",

"string": ""

}

}],

"measurement": [{

"start": 0,

"end": 0,

"id": 0,

"type": "",

"data": {

"dimension": "",

"unit": "",

"value": 0,

"normalized": 0

}

}],

"coreference": [{

"start": 0,

"end": 0,

"id": 0,

"type": "",

"data": {

"matches": [{

"id": 0

}],

"string": "",

"rule": ""

}

}],

"sentenceSentiment": [{

"start": 0,

"end": 0,

"id": 0,

"type": "",

"data": {

"emotion": "",

"polarity": "",

"sarcasm": "",

"sentiment_string": ""

}

}],

"similarityOfDocuments": [{

"start": 0,

"end": 0,

"id": 0,

"type": "",

"data": {

"results": 0.0

}

}],

"textSummarization": [{

"start": 0,

"end": 0,

"id": 0,

"type": "",

"data": {

"score": 0.0

}

}],

"WordLem": [{

"start": 0,

"end": 0,

"id": 0,

"type": "",

"data": {

"originalWord": "",

"lemmatizedWord": ""

}

}],

"wordStem": [{

"start": 0,

"end": 0,

"id": 0,

"type": "",

"data": {

"originalWord": "",

"stemmedWord": ""

}

}],

"answering": [{

"start": 0,

"end": 0,

"id": 0,

"type": "",

"data": {

"score": 0.0,

"result": ""

}

}],

"spaceToken": [{

"start": 0,

"end": 0,

"id": 0,

"type": "",

"data": {

"length": 0

}

}],

"textClassification": [{

"data": {

"matches": [],

"classification": "",

"confidence": 0.0

}

}]

}

Table 2: GATE schema (annotation types) represented in a JSON format. Schema was extracted by Nik
Hrovat [6].

3.3 UIMA data model

UIMA uses a standardized schema, prepared by OASIS standardization group. The last published version
is from 2008 and in Table 3 we show extracted annotations in a JSON format. OASIS published version
is UIMA 1.0, dated in 200911.

The specification also defines a communication protocol and processes for an NLP system. Annota-
tions are basically still objects that relate to specific types, such as persons or specific systems outputs
like summarization.

10https://gate.ac.uk/sale/tao/splitch5.html#x8-840005.3 (Accessed: July 19, 2022).
11http://docs.oasis-open.org/uima/v1.0/uima-v1.0.html (Accessed: July 19, 2022).

7

https://gate.ac.uk/sale/tao/splitch5.html#x8-840005.3
http://docs.oasis-open.org/uima/v1.0/uima-v1.0.html

ANGLEr blueprints and design RSDO DS3 A3.2, Deliverable R3.1.2

{

"tokens": [{

"id": 0,

"begin": 0,

"end": 0,

"data": {

"string": ""

}

}],

"name": [{

"id": 0,

"begin": 0,

"end": 0,

"data": {

"string": ""

}

}],

"personTitle": [{

"id": 0,

"begin": 0,

"end": 0,

"data": {

"kind": ""

}

}],

"government": [{

"id": 0,

"begin": 0,

"end": 0,

"data": {

"string": ""

}

}],

"email": [{

"id": 0,

"begin": 0,

"end": 0,

"data": {

"string": ""

}

}],

"sentence": [{

"id": 0,

"begin": 0,

"end": 0,

"data": {

"string": ""

}

}],

"location": [{

"id": 0,

"begin": 0,

"end": 0,

"data": {

"kind": ""

}

}],

"link": [{

"id": 0,

"begin": 0,

"end": 0,

"data": {

"type": "",

"string": ""

}

}],

"coreference": [{

"id": 0,

"begin": 0,

"end": 0,

"data": {

"matches": [{

"id": 0

}],

"score": 0.0

}

}],

"documentsSimilarity": [{

"id": 0,

"begin": 0,

"end": 0,

"data": {

"documentId": 0,

"result": 0.0

}

}],

"summarization": [{

"id": 0,

"begin": 0,

"end": 0,

"data": {

"sentences": []

}

}],

"stemmer": [{

"id": 0,

"begin": 0,

"end": 0,

"end": 0,

"data": {

"original": "",

"stemmed_word": ""

}

}],

"sentenceSentiment": [{

"id": 0,

"begin": 0,

"end": 0,

"data": {

"emotion_name": "",

"sentiment_string": ""

}

}],

"classification": [{

"id": 0,

"begin": 0,

"end": 0,

"data": {

"topic": "",

"confidance": 0.0

}

}],

"lemma": [{

"id": 0,

"begin": 0,

"end": 0,

"data": {

"original": "",

"lemmatized_word": ""

}

}],

"answer": [{

"id": 0,

"begin": 0,

"end": 0,

"data": {

"result": 0.0,

"sentence": ""

}

}]

}

Table 3: UIMA schema (annotation types) represented in a JSON format. Schema was extracted by Nik
Hrovat [6].

3.4 Orange data model

Orange’s native model are .tab files, which is basically a tabular format for standard machine learning
tasks. For the needs of text mining addon, a corpus can be fed to Orange using a .tab file, where each
line is a document that can contain multiple features in each column, such as fulltext, class, ...

A user also has an option to import documents encoded in predefined formats (i.e., .txt, .docx, .odt,
.pdf, .xml, and .conllu) from a folder. Similar functionality is also available in Textable. Corpus can be
created also interactively. Apart from these, separate widgets are available to import data from predefined
structured sources such as The Guardian, NY Times, Pubmed, Twitter, and Wikipedia.

Results from supported text widgets are returned as additional column features. For example, doc-
ument embeddings add [embedding-length] columns to each document as an embedding representation.
Some widgets introduce their own formats, such as bag of words, which works with a column that contains
words and their frequencies, e.g., “word1=3, word2=123, word3=66, ...”

Formats can also be transformed, so that they can be natively used with pre-existing ML stack, and
this is a great added value of Orange.

3.5 Stanza data model

Stanford NLP Group has already a long tradition in offering NLP tools. Prevously they provided Java-
based Stanford Core NLP [9] that provided a HashMap-based data model. Similarly, they now provide
Stanza library [12] with a simpler model.

The Stanza’s model is nicely described on its Web page12. Model is key-value based and therefore it
supports for adding new features to each object type. In Table 4 we show Stanza’s data format in JSON
representation.

The model seems easy to understand, is extensible, but is clearly prepared for only a subset of natural
language processing tasks, such as named entity recognition or lemmatization.

12https://stanfordnlp.github.io/stanza/data_objects.html (Accessed: July 19, 2022).

8

https://stanfordnlp.github.io/stanza/data_objects.html

ANGLEr blueprints and design RSDO DS3 A3.2, Deliverable R3.1.2

// Document

{

"text": "The raw text.",

"sentences": [{Sentence1}, {Sentence2}, ...],

"entities": [{Span1}, {Span2}, ...],

"num_tokens": 51,

"num_words": 23

}

//Sentence

{

"doc": Document, //back-pointer

"text": "The raw text",

"dependencies": [

{"head w.": "go", "rel.": "subj", "dep. w.": "home"},

...

],

"tokens": [{Token1}, {Token2}, ...],

"words": [{Word1}, {Word2}, ...],

"entities": [{Span1}, {Span2}, ...],

"sentiment": "positive",

"constituency": {ParseTree}

}

//Token

{

"id": {"start-idx": 1, "end-idx": 4},

"text": "The",

"misc": "Custom annotation value",

"words": [{Word1}, {Word2}, ...],

"start_char": 24,

"end_char": 43,

"ner": "B-ORG"

}

//Word

{

"id": 3,

"text": "The",

"lemma": "the",

"upos": "NOUN",

"xpos": "NNP",

"feats": "Gender=Fem|Person=3",

"head": 2, //syntactic head word

"deprel": "nmod", //relation to head word

"deps": "head-word + deprel",

"misc": "custom value",

"parent": {Token}

}

//Span

{

"doc": {Document},

"text": "The Batman",

"tokens": [{Token1}, {Token2}, ...],

"words": [{Word1}, {Word2}, ...],

"type": "PERSON",

"start_char": 21,

"end_char": 43

}

//ParseTree

{

"label": "Noun",

"children": [{ParseTree1}, {ParseTree2}, {ParseTree3}, ...]

}

Table 4: Stanza schema (annotation types) represented in a JSON format.

4 ANGLEr data model (proposal)

According to the data models reviewed above, we believe that they introduce useful features but are
not general, extensible or easy to understand. For example: GATE introduces some document types
and annotation types but new types would need to be made almost from scratch and encoded in Java.
UIMA features very comprehensive ans complex schema which seems is not developing anymore. Orange
offers tabular-oriented format with transformations for specific tasks and therefore no general format for
text processing representation was made. Stanza presents a clear and understandable format but is not
comprehensive.

ANGLEr Data ObjectCorpus

Tokenization Sequence
classification

Sequence
annotation

Interrelation
identification

Discourse
analysis

Hierarchy
representation Texts

Scores

Vectors

Additional features

An
no

ta
tio

ns
D

at
a

Sp
ec

ifi
c

ex
te

ns
io

ns

Document

Sentences

Words

N-grams

Question
answering

Summarization

Word
embeddings

Sentence
embeddings

Coreference
resolution

Discourse
parsingClustering

Dependency
parsing

Semantic role
labeling

Relationship
extraction

Document
categorization

Sentiment
analysis

Part-of-speech
tagging

Named entity
recognition

Figure 6: ANGLEr object type hierarchy.

We believe that a data model need to identify general approaches and provide minimum viable set
of necessary attributes that can be further extended by specific methods. Also, “hierarchical-”style of
model representation would better suit for navigation, extensibility and understanding of the model.
Based on our knowledge of the NLP field, we believe the following top-level data model categories need
to be supported:

Corpus : As in almost most of the models, corpus should consist of documents, which should be a
lower-level representation of a document. Documents can be of different types, lengths and should
contain text and metadata.

Tokenization : Textual data is mostly needed to be represented as sentences, words, multi-word ex-
pressions, n-grams, ... This type should therefore allow multiple representations. Pre-existing tok-
enizations are stored within this field - the same also holds for true annotations for other categories
below.

Sequence classification : We believe sequence is a general term that represents, tokens, words, sen-
tences, ... Some examples of concrete tasks are sentiment analysis or document categorization. For
the result of classification it is important to know the classified label.

9

ANGLEr blueprints and design RSDO DS3 A3.2, Deliverable R3.1.2

Sequence annotation (i.e., tagging) : This type should be used to store a set of tags for different
sequences of the documents. Some examples of concrete tasks include part-of-speech tagging or
named entity recognition.

Interrelation identification : This type should be used to model any type of relationships between
two (or more) objects. Some examples would be similarity between two documents, semantic role
labeling, or semantic relationship between two words in a sentence (“John” → lives in → “Boston”).

Discourse analysis : This type should be able to address different sequences, for example, sequences of
mentions (i.e., subtype fo tokenization) for coreference resolution, or sequences of sentences. Each
sequence can have associated labels that identify objects’ interrelationships.

Hierarchy representation : This type needs to enable a representation of a hierarchical structure
between different elements of text. Examples of such tasks are chunking, dependency parsing, or
clustering (on a top level we have a root that might form N clusters of documents).

Texts : This type is intended to represent textual results of analysis. For example, a document might
consist of different components - text, question, answer. For a question answering, this field would
contain generated answers; for translation translations; for summarization summaries (of specific
document types).

Vectors : In the era of deep learning, vectorized representations became even more popular. This field
should be able to represent vectors of any other type - e.g., document, token, ...

Scores : Evaluation results of specific algorithm. The type includes reference to algorithm annotations
and includes metrics with scores.

Additional features : Each type should offer an algorithm to store additional features (key/value pairs)
to its object. These features might be date and time of annotation, algorithm name, ...

In Figure 6 we present a general ANGLEr data model. The “umbrella object” includes (a) corpus, (b)
scores, and (c) high-level annotation objects. The objects are hierachical, so descendants inherit methods
and attributs from their parents. Therefore, objects on annotation level define a minimum subset of
attributes that can be extended in lower levels. This enables interoperability between different methods.
Also, each object includes additional features attribute that contains key/value pairs for metadata of a
specific object.

In Table 6 we propose an example structure of proposed data model in a JSON format. Different
parts are interconnected using component ids. Some of the components can be used as-is, others need to
be specified depending on specific algorithm. For example, a discourse analysis template can be extended
for coreference resolution or discourse markers analysis.

4.0.1 Versioning

Type hierarchy is proposed to improve backward compatibility when adding new object types. This way
each new specific object type contains the attributes of its parent as well as some of its own attributes
(each level also allows for key-value metadata storage). We can thus ensure that an algorithm that was
created for working with a general object type can also work with all of its descendants. For instance, a
tool for computing token frequencies could be created to accept a token. This enables it to accept all other
specific objects that inherit from the token type - e.g., the Parsing type. In named entity recognition,
for example, the program would accept two types of input. Firstly, it would accept the token type to get
the separation of the documents into tokens. In addition to that, it would also accept the part of speech
tags represented in the sequence tagging object type. The resulting named entities would be represented
by an object with the sequence tagging type.

As new algorithms are developed, additional object types might get defined. We would like to store a
list of all available object types in a way where it can get updated later on. It is also important that each
data model be marked with a unique version number. The data model will be versioned using SemVer
guidelines and all the versions should be available in open source code repository.

5 ANGLEr framework architecture (proposal)

During the review of existing frameworks we discovered good and bad practices. The idea is to provide
an extensible and scalable framework where researchers could easily integrate their tools, and users (e.g.,
non-technical) could also easily use them. Apart from the versioned data model, we believe it is important
to provide (a) an extensible API-based architecture with unified, and (b) pluggable user interface.

10

ANGLEr blueprints and design RSDO DS3 A3.2, Deliverable R3.1.2

//ANGLEr Data Object

{

"corpora": [{Corpus1}, {Corpus2}, ...],

"scores": [{Scores1}, {Scores2}, ...],

"annotations": [{Annotations1}, {Annotations2}, ...],

"features": {"version": "1.0"} //Custom attributes

}

//Corpus

{

"id": "1",

"name": "Best NER-KB corpus",

"documents": [{Document1}, {Document2}, ...],

"features": {"url": "http://corpus-1.0.si"} //Custom attributes

}

//Document

{

"id": "1-23", //Corpus id + Document id

"text": "Best Story! Once upon a time, ...", //text used for analysis

//Structured text parts that can be used by algorithms by key

"text-parts": {

"title": "Best Story!",

"content": "Once upon a time, ...",

"likes": 34

}

"features": {"length": 320, "separator": " "} //Custom attributes

}

//Scores

{

"predicted_annotations_id": 42,

"true_annotations_id": 31,

"scores": {

"F1": 0.45,

"P": 0.88,

"R": 0.91

},

"features": {"time": 2353242362} //Custom attributes

}

//Tokenization template

{

"id": 33, //Used for algorithm input selection

"annotation-type": "TOKENIZATION",

"algorithm": "rule-based-1",

"type": "SENTENCE", //WORDS, NGRAMS, WORD-PARTS, ...

"documents": [

{"doc_id": "1-23",

"tokens": [{"id": 1, "start_idx": 0, "end_idx": 342,

"text": "Tralala, hopsasa."}, ...]

}, ...

],

"features": {"time": 2353242362} //Custom attributes

}

//Sequence classification template

{

"id": 36, //Used for algorithm input selection

"annotation-type": "SEQUENCE-CLASSIFICATION",

"algorithm": "Best NN categorizer",

"corpus_id": "1",

"sequences": [

{"id": 1, "class": "POSITIVE"}, ...

],

"features": {"time": 2353242362} //Custom attributes

}

//Sequence annotation template

{

"id": 39, //Used for algorithm input selection

"annotation-type": "SEQUENCE-ANNOTATION",

"algorithm": "CRF annotator",

"tokenization_id": "1",

"annotations": [

{"doc_id": "1-23", "tags": ["O", "ORG", "O", ...]}, ...

],

"features": {"annotation_time": "20sec"} //Custom attributes

}

//Interrelation identification template

{

"id": 41, //Used for algorithm input selection

"annotation-type": "INTERRELATION-IDENTIFICATION",

"algorithm": "Intraverse relation extractor",

"tokenization_id": "3",

"relations": [

{"relation": "employed_at", ...} //This object is specified on lower levels

],

"features": {"annotation_time": "20sec"} //Custom attributes

}

//Hierarchy representation template

{

"id": 43, //Used for algorithm input selection

"annotation-type": "HIERARCHY-REPRESENTATION",

"algorithm": "Agglomerative clusterer",

"tokenization_id": null, //One of the following set only!

"corpus_id": "1"

"hierarchies": [

{"parent_id": "34", "descendants": [{"id": "44", "relation": "nsubj"}, ...]}

//This objects are specified on lower levels

],

"features": {"max-hierarchy": 13} //Custom attributes

}

//Discourse analysis template

{

"id": 45, //Used for algorithm input selection

"annotation-type": "DISCOURSE-ANALYSIS",

"algorithm": "Coref resolver SkipCor v2",

"tokenization_id": 1, //These are sentences, mentions, ...

"chains": [

{"id1": "34", "id2": "45", "type": "anaphora"} //This object is specified on lower levels

],

"features": {"singletons-num": 61} //Custom attributes

}

//Vectors template

{

"id": 47, //Used for algorithm input selection

"annotation-type": "VECTORS",

"algorithm": "Doc2Vec",

"tokenization_id": null, //One of the following set only!

"corpus_id": "1"

"vectors": [

{"id": "78", "vec": [2.000, 3.241, 4.267, 5.987, ...]}

],

"features": {"vector-dim": 350} //Custom attributes

}

//Texts template

{

"id": 49, //Used for algorithm input selection

"annotation-type": "TEXTS",

"algorithm": "AnglerSummarizer",

"corpus_id": "1",

"doc-text-part-inputs": {

"question": "question-part",

"content": "text-part"

}, //This object is specified on lower levels

"texts": [

{"doc-id": "78", "value": "No."}

],

"features": null //Custom attributes

}

Table 5: ANGLEr schema (annotation types) represented in a JSON format.

In Figure 7) we show a high-level architecture of the proposed ANGLEr framework which consists of
(a) ANGLEr modules, (b) ANGLEr Core, (c) ANGLEr UI, and (d) ANGLEr data models. From the
terminology point of view, it is important to understand the following:

Processor : A processor is an algorithm that expects to get some data and return news results following
the ANGLEr data model. A processor corresponds to an algorithm/step in a workflow.

Module : A module is a (Docker-based) package that can contain multiple processors and all the
functionalty to be integrated into ANGLEr Core (i.e., UIs, widget definitions, settings, ...). It
communicates with the ANGLEr Core using a Module API (see Section 6). A Module can also be
used independently by a third-party application without other ANGLEr framework parts.

ANGLEr Core is the main building block, which provides all the framework functionalities to glue
different components together. It provides functionality to manage workflows, to install/remove modules,
to work with the Docker subsystem, saves the data in its own internal database, and provides APIs
for communication. ANGLEr user interface is able to communicate with ANGLEr core and includes
essential functionality for working with Core, such as support for settings, menus, Core functions, and
workflow features (i.e., running, stopping, saving, opening existing workflows, ...). Most of the specific UIs
(e.g., widget icons, widget settings, processor visualizations) are directly embedded via specific Module
APIs. In that sense, each ANGLEr module developer has its own options how to visualize his own part

11

ANGLEr blueprints and design RSDO DS3 A3.2, Deliverable R3.1.2

ANGLEr Data Models

ANGLEr Core

ANGLEr User
Interface

ANGLEr Modules

Module 1 - Named entity
recognition

- Processors
 - Widget UIs
 - Settings definition
 - Widget icon
- Service discovery
- Data model support Vx.y.y
- Description

M
od

ul
e

AP
I

Framework backend

- Workflor Manager
- Workflow Import/Export
- Module Add/Delete
- UI Manager
- Basic Workflow Components
- Runner/Status Observer Ap

pl
ic

at
io

n
AP

I

C
al

lb
ac

k
AP

I

U
I S

up
po

rt
 A

PI

ANGLEr UI

- User Settings
- Docker Settings
- Data
- Workspace

Third-party applications

Data model V1.0.1

Module 2 - Question answering

M
od

ul
e

AP
I- Processors

 - Widget UIs
 - Settings definition
 - Widget icon
- Service discovery
- Data model support Vx.y.y
- Description

…

- Research analysis
- Specific system integrations
- On-demand services

Internal database

Using specific ANGLEr
modules independently

Using ANGLEr Core
Workflow

Figure 7: ANGLEr high-level system architecture proposal.

of functionality. The underlying glue component is the ANGLEr data model, which enables seamless
communication.

As all the APIs should follow guidelines, the system is loosely-coupled. Therefore, third-party systems
will be able to use modules as standalone components. Also, in case someone will first prepare a workflow
using ANGLEr, he will be able to programmatically integrate with ANGLEr Core and directly use results
in their applications (without using ANGLEr UI).

6 The module API

// Endpoint: /about GET

{

"UUID": "81a03d1a-0844-11ed-861d", //Identifier of the module.

"name": "Best NER processors", //Name of the module.

"version": "v1.2.9", //Module version.

"data_model": "v1.0.1", //Version of the data model used.

"desc": null, //(optional) Module description.

"authors": "Jane Doe", //(optional) List of authors.

"organisation": "University of Ljubljana", //(optional) Organisation of the authors.

"url": "best-ner.github.io", //(optional) URL address of the page about the module.

"docs_url": //(optional) A web page containing the documentation.

}

// Endpoint: /processors GET

[

{

"name": "CRF-based NER tagger" //Name of a processor.

"short_name": "CRF-NER", //(optional) Short version of the name.

"settings_endpoint": "/crf-ner/settings", //(optional) A module-relative address of a page containing processor settings.

"ui_endpoint": "/ner-visualizations", //(optional) A module-relative address of a page for visualization.

"icon": "/crf-ner/icon.ico", //A module-relative address of the icon to be used to represent the processor.

"category": "Semantic analysis", //A category of the processors menu that should contain this processor (i.e., widget).

"run_endpoint": "/crf-ner/run", //Starting a processor. Data (i.e., current ANGLEr data object) is sent as payload.

"status_endpoint": "/crf-ner/status", //(optional) Returning statuses READY, PROCESSING (XX \%)

"stop_endpoint": "/crf-ner/stop", //Stopping/cancelling current processing

"inputs": ["TOKENIZATION", "WORDS"], //A list of ANGLEr data object types (from a hierarchy) that need to exist in the current data object for running this processor.

"outputs": ["NER-ANNOTATION"], //A list of ANGLEr data object types (from a hierarchy, as high-level as possible) representing the processor's outputs.

"docs_url": //(optional) A web page containing the documentation.

},

... // Other available processors

]

Table 6: ANGLEr Module APIs definition (proposal).

ANGLEr is working with a mutable ANGLEr Data Object that processors can change (mutable
object). All of the communication between the parts of the architecture is done over REST application
programming interfaces (API). In Table 6 we define the necessary module API that ANGLEr uses in

12

ANGLEr blueprints and design RSDO DS3 A3.2, Deliverable R3.1.2

the “service discovery” part. The two obligatory endpoints provide information about the module and
processors. With the results of /processors endpoint, ANGLEr can show the processor, provide access to
its UI (settings, visualizations), and communcate with it (i.e., running, stopping, ...).

As presented, UI endpoint should provide Web-based interface that would be integrated into the
ANGLEr’s Core. Apart from numerous options of Web programming languages to prepare a new UI,
developers might reach out to simple prepared frameworks that provide UIs for their use case. An example
of such a framework is Gradio13

6.1 Docker-based architecture

The use of Docker-based implementations is actually not needed, but to provide better interoperability
between systems, easy installation, and running, we provide all components packages as Docker images.

Using this approach a Docker image can contain all dependencies, each processor can be implemented
in its own programming language, distribution of updates is easier, and also enables scalability for users
that would like to run modules on different physical machines or in cloud (multiple instances). Still, the
designed system is intended to be single-user only.

6.2 ANGLEr graphical user interface (proposal)

The graphical user interface allows for custom acyclic widget-graph creation for running workflows. It is
important to note that running the components will be done in a strictly sequential manner (e.g., different
branches do not mean execution in parallel), and all the processors will have access to the same object
that was altered (i.e., mostly with just additional annotations added) during the processing workflow.

Tool groups
Tools

Pipeline

Tool options

Connection configuration Result visualisation

Figure 8: A general ANGLEr user interface (proposal).

In Figure 8 we show a general ANGLEr user interface. The upper part features categories of different
processors. A user can drag-and-drop a specific processor to the canvas to see its settings, connect it to
other processors, and then observe results. We show additional user interface actions in Figures 9, 10,
11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, and 26.

6.3 A use case scenario

ANGLEr needs to have some imported modules that enable processing. In this use case we will briefly
describe how we imagine working with ANGLEr.

Once the framework is started, ANGLEr backend docker starts running and runs also other Docker
images if not already running. If the database container was not removed, settings from the previous
system run remained the same. From a user perspective, all work is done via the Web user interface.

First, when adding a new module to the framework, ANGLEr backend creates a request to the /about
endpoint URL we provided to get the basic information about the entire module. After that it requests
the /processors endpoint to include all the available processors into the framework (i.e., internal database
and graphical user interface).

A user can now drag-and-drop some widgets to the canvas and connect them between each other.
Probably, first widget will import data, while other widgets will process/manipulate or visualize it. A

13https://gradio.app (Accessed: July 25, 2022).

13

https://gradio.app

ANGLEr blueprints and design RSDO DS3 A3.2, Deliverable R3.1.2

Connection status: 5/5 addons connected

Welcome to ANGLEr

New docuement

Recent files

Open docuement

Tutorials

Recent files

Project 1

Project 4

Project 2

Project 5

Project 3

Project 6

APPlogo

Figure 9: ANGLEr showcase UI (proposal).

Connection status: 5/5 addons connected

Welcome to ANGLEr Tutorials

Video Tutorial 1

Video Tutorial 4 Video Tutorial 5 Video Tutorial 6

Video Tutorial 2 Video Tutorial 3

APPlogo

New docuement

Recent files

Open docuement

Tutorials

Figure 10: ANGLEr showcase UI (proposal).

user can also define specific settings that are provided for each processor separately14. After a user runs
the workflow, he can observe results or use visualization widgets to browse results.

7 Final thoughts

In this report we described the high-level specifics and provided initial blueprints for the implementation
of a general extensible data model and (Web-based) tool for text analysis and exploration (ANGLEr).

14It is not yet defined how specific processor settings would be stored when exporting workflow. Also, one processor can
be used multiple times with different settings, so they should be somehow monitored by the ANGLEr.

14

ANGLEr blueprints and design RSDO DS3 A3.2, Deliverable R3.1.2

Connection status: 5/5 addons connected

Addons

Theme

Language

Settings Visualisation tools

Number of tools: 5 Host: localhost Port: 9001 Memory usage: 16MB

NEW ADDON

External Addon Built-in Addon

Register addon

Localhost

Host

9002

Port number

Add

Close Settings

APPlogo

Figure 11: ANGLEr showcase UI (proposal).

Stop all Run all

Coreference Word

Embedings

Tokenize

Tokenize

Text
Transformation

Connection status: 5/5 addons connected

Import Data

Visualisation

Preprocessing

Syntactic Analysis

Semantic Analysis

Document Classification

Language Models

APPlogo

T
Plain Text

File
System
Folder

MySQL
Database

CSV File Combine
Files

Figure 12: ANGLEr showcase UI (proposal).

The research community and other interested parties would benefit from a tool like this. The tool would
allow to easily run specific state-of-the-art methods and share them to use by non-technical users.

We have described already existing approaches that solve this problem. For those that are mostly used,
it is important to provide a continual improvements and vibrant community (and employed programmers)
that updates the system. The main thoughts from our journey are as follows:

We describe the main components for implementing a new natural language processing framework -
ANGLEr. We believe that a new framework based on our proposal would provide a large improvement
over the existing frameworks and would greatly benefit users that are working with natural language
processing. The framework would provide a fast way for prototyping when developing text processing
pipelines. It would also allow users with no programming knowledge to build advanced nlp pipelines. In

15

ANGLEr blueprints and design RSDO DS3 A3.2, Deliverable R3.1.2

Stop all Run all

Coreference Word

Embedings

Tokenize

Tokenize

Text
Transformation

Connection status: 5/5 addons connected

Import Data

Visualisation

Preprocessing

Syntactic Analysis

Semantic Analysis

Document Classification

Language Models

APPlogo

T
Text

Transformation

A→a

Stop Word
Filtering

Words

ABC

Regex
Filtering

N-gram

AB
BC

Sentences

Sen.

Figure 13: ANGLEr showcase UI (proposal).

Stop all Run all

Coreference Word

Embedings

Tokenize

Tokenize

Text
Transformation

Connection status: 5/5 addons connected

Import Data

Visualisation

Preprocessing

Syntactic Analysis

Semantic Analysis

Document Classification

Language Models

APPlogo

T
TF-IDF

TF
IDF

Word Frequency

#N

Tokenize

Spell Check Stemming Part of
Speech

POS

Lematization

L
Dependency

parsing

Figure 14: ANGLEr showcase UI (proposal).

addition to that, the new framework would provide the researchers with a great way for showcasing their
work in the nlp area. Since the tools can be implemented in any programming language, their inclusion
is much less complicated than with existing frameworks.

Is there a need to represent all the NLP tasks in one comprehensive data model? We have mul-
tiple types of dataset annotations and a lot of efforts go into writing scripts to wrangle these data.
The same holds for data modeling of results of different NLP tasks. There have been many different
initiatives and it seems none of them survived. We can thus try to prepare a simple, hierarchical
and as much comprehensive model as possible.

Should we develop Yet Another NLP tool/framework? Technology is constantly changing. Of

16

ANGLEr blueprints and design RSDO DS3 A3.2, Deliverable R3.1.2

Stop all Run all

Coreference Word

Embedings

Tokenize

Tokenize

Text
Transformation

Coreference Word
Embedings

Sentence
Embedings

Named Entity
Recognition

NER

Chunking

AB_CD

Concordance

W

Word Sense

Connection status: 5/5 addons connected

Semantic
role labeling

Import Data

Visualisation

Preprocessing

Syntactic Analysis

Semantic Analysis

Document Classification

Language Models

APPlogo

Figure 15: ANGLEr showcase UI (proposal).

Coreference

Coreference Word

Embedings

Tokenize

Text

Transformation

Word
Embedings

Sentence
Embedings

Named Entity
Recognition

NER

Chunking

AB_CD

Concordance

W

Word Sense

Connection status: 5/5 addons connected

Semantic
role labeling

Import Data

Visualisation

Preprocessing

Syntactic Analysis

Semantic Analysis

Document Classification

Language Models

Stop all Run allAPPlogo

Figure 16: ANGLEr showcase UI (proposal).

course the right direction seems to have loosly-coupled components as possible, but we also need
to regularly promote and maintain the system. Currently, Docker-based and Web-based implemen-
tation seems the smartest choice, which might change in the future. Half-way alternative would
be to integrate into some existing framework15 and develop only processors (the approach might
not be feasible as it would still be an effort for 3rd parties to add new widgets/tools; data process-
ing is different as we expect to have a mutable object; running should be different as should be
more controlled and not immediate; tool would not be model agnostic, ...). Nevertheless, continual
maintenance would still be needed, but maybe less frequent.

15For example, Orange3 addons - https://github.com/biolab/orange3-example-addon (Accessed: July 20, 2022).

17

https://github.com/biolab/orange3-example-addon

ANGLEr blueprints and design RSDO DS3 A3.2, Deliverable R3.1.2

Coreference

Coreference

Coreference

Word

Embedings

Word

Embedings

Tokenize

Tokenize

Text
Transformation

Text
Transformation

Word
Embedings

Sentence
Embedings

Named Entity
Recognition

NER

Chunking

AB_CD

Concordance

W

Word Sense

Connection status: 5/5 addons connected

Semantic
role labeling

Import Data

Visualisation

Preprocessing

Syntactic Analysis

Semantic Analysis

Document Classification

Language Models

Stop all Run allAPPlogo

Figure 17: ANGLEr showcase UI (proposal).

Coreference Word
Embedings

Sentence
Embedings

Named Entity
Recognition

NER

Chunking

AB_CD

Concordance

W

Word Sense

Connection status: 5/5 addons connected

Semantic
role labeling

Import Data

Visualisation

Preprocessing

Syntactic Analysis

Semantic Analysis

Document Classification

APPlogo

Language Models

Stop all Run all

Coreference Word

Embedings

Tokenize

Tokenize

Text
Transformation

Tokens (Tokenizer 1)

Tokens (Tokenizer 1)

N-grams (Bigrams)

Words (Tokenizer 2)

Tokens to use:

Configure Connection

Word embedings

Figure 18: ANGLEr showcase UI (proposal).

Who are users and who would pay for it? There exist a number of (data science) linguists who
would like to process text with simple techniques. The best would be to employ similar model to
SketchEngine16 or GATE. So starting with some special grants that would fund the design and
development. After that some commercial activities would be needed to get maintenance funding.

16https://www.sketchengine.eu/ (Accessed: July 20, 2022)

18

https://www.sketchengine.eu/

ANGLEr blueprints and design RSDO DS3 A3.2, Deliverable R3.1.2

Stop all Run all

Coreference Word

Embedings

Tokenize

Tokenize

Text
Transformation

Connection status: 5/5 addons connected

Import Data

Visualisation

Preprocessing

Syntactic Analysis

Semantic Analysis

Document Classification

Language Models

APPlogo

Sentiment
Analisys

Decision Tree SVM

Class reader Sequence
classification

Clustering

Figure 19: ANGLEr showcase UI (proposal).

Stop all Run all

Coreference Word

Embedings

Tokenize

Tokenize

Text
Transformation

Connection status: 5/5 addons connected

Import Data

Visualisation

Preprocessing

Syntactic Analysis

Semantic Analysis

Document Classification

Language Models

APPlogo

Knowledge
Graph

Question
Answering

Summarization

Figure 20: ANGLEr showcase UI (proposal).

8 Acknowledgements

Project Development of Slovene in a Digital Environment (RSDO) is financed bt the Slovene Ministry of
Culture and the European Regional Development Fund.

19

ANGLEr blueprints and design RSDO DS3 A3.2, Deliverable R3.1.2

Coreference Word
Embedings

Sentence
Embedings

Named Entity
Recognition

NER

Chunking

AB_CD

Concordance

W

Word Sense

Connection status: 5/5 addons connected

Semantic
role labeling

Import Data

Visualisation

Preprocessing

Syntactic Analysis

Semantic Analysis

Document Classification

Language Models

Word Embedings

APPlogo

53%RERUN STOP

Word2Vec

Pretrained embedings:

Normal (350)

Embeding size:

Zero vector

Missing data replacement:

Tokens (Tokenizer 1)

Input selection:

Coreference Word

Embedings

Tokenize

Tokenize

Text
Transformation

Figure 21: ANGLEr showcase UI (proposal).

Coreference

Word Embedings

Word
Embedings

Sentence
Embedings

Named Entity
Recognition

NER

Chunking

AB_CD

Concordance

W

Word Sense

Connection status: 5/5 addons connected

Semantic
role labeling

Import Data

Visualisation

Preprocessing

Syntactic Analysis

Semantic Analysis

Document Classification

Language Models

53%RERUN STOP

APPlogo

Word2Vec

Pretrained embedings:

Normal (350)

Embeding size:

Zero vector

Missing data replacement:

Tokens (Tokenizer 1)

Input selection:

Coreference Word

Embedings

Tokenize

Tokenize

Text
Transformation

View Vizualization

Figure 22: ANGLEr showcase UI (proposal).

References

[1] Bird, S., Loper, E.: Nltk: the natural language toolkit. Association for Computational Linguistics
(2004)

[2] Cunningham, H.: Gate, a general architecture for text engineering. Computers and the Humanities
36(2), 223–254 (2002)

[3] Demšar, J., Curk, T., Erjavec, A., Gorup, Č., Hočevar, T., Milutinovič, M., Možina, M., Polajnar,
M., Toplak, M., Starič, A., et al.: Orange: data mining toolbox in python. the Journal of machine
Learning research 14(1), 2349–2353 (2013)

20

ANGLEr blueprints and design RSDO DS3 A3.2, Deliverable R3.1.2

Coreference Word
Embedings

Sentence
Embedings

Named Entity
Recognition

NER

Chunking

AB_CD

Concordance

W

Word Sense

Connection status: 5/5 addons connected

Semantic
role labeling

Import Data

Visualisation

Preprocessing

Syntactic Analysis

Semantic Analysis

Document Classification

Language Models

APPlogo

Coreference Word

Embedings

Tokenize

Tokenize

Text
Transformation

Word Embedings

53%RERUN STOP

Word2Vec

Pretrained embedings:

Normal (350)

Embeding size:

Zero vector

Missing data replacement:

Tokens (Tokenizer 1)

Input selection:

V
iew

 V
izualization

Figure 23: ANGLEr showcase UI (proposal).

Coreference Word
Embedings

Sentence
Embedings

Named Entity
Recognition

NER

Chunking

AB_CD

Concordance

W

Word Sense

Connection status: 5/5 addons connected

Semantic
role labeling

Import Data

Visualisation

Preprocessing

Syntactic Analysis

Semantic Analysis

Document Classification

Language Models

APPlogo

Coreference Word

Embedings

Tokenize

Tokenize

Text
Transformation

Visualisation Word Embedings

53%RERUN STOP

Word2Vec

Pretrained embedings:

Normal (350)

Embeding size:

Zero vector

Missing data replacement:

Tokens (Tokenizer 1)

Input selection:

Cosine similarity

DISTANCE MEASURE

2

NUMBER OF GROUPS

Export as image

C
lose V

izualization

Figure 24: ANGLEr showcase UI (proposal).

[4] Ferrucci, D., Lally, A.: Uima: an architectural approach to unstructured information processing in
the corporate research environment. Natural Language Engineering 10(3-4), 327–348 (2004)

[5] Hellmann, S., Lehmann, J., Auer, S.: Linked-data aware uri schemes for referencing text frag-
ments. In: EKAW 2012. Lecture Notes in Computer Science (LNCS) 7603, Springer (2012).
https://doi.org/doi:10.1007/978-3-642-16438-5 10

[6] Hrovat, N.: Zasnova ogrodja za izvajanje metod za procesiranje naravnega jezika. Ph.D. thesis,
Univerza v Ljubljani, Fakulteta za računalnǐstvo in informatiko (2022)

21

ANGLEr blueprints and design RSDO DS3 A3.2, Deliverable R3.1.2

Coreference Word
Embedings

Sentence
Embedings

Named Entity
Recognition

NER

Chunking

AB_CD

Concordance

W

Word Sense

Connection status: 5/5 addons connected

Semantic
role labeling

Import Data

Visualisation

Preprocessing

Syntactic Analysis

Semantic Analysis

Document Classification

Language Models

APPlogo

Coreference Word

Embedings

Tokenize

Tokenize

Text
Transformation

Word Embedings

53%RERUN STOP

Word2Vec

Pretrained embedings:

Normal (350)

Embeding size:

Zero vector

Missing data replacement:

Tokens (Tokenizer 1)

Input selection:

View Vizualization

Figure 25: ANGLEr showcase UI (proposal).

Coreference Word
Embedings

Sentence
Embedings

Named Entity
Recognition

NER

Chunking

AB_CD

Concordance

W

Word Sense

Connection status: 5/5 addons connected

Semantic
role labeling

Import Data

Visualisation

Preprocessing

Syntactic Analysis

Semantic Analysis

Document Classification

Language Models

APPlogo

Coreference Word

Embedings

Tokenize

Tokenize

Text
Transformation

Visualisation Word Embedings

53%RERUN STOP

Word2Vec

Pretrained embedings:

Normal (350)

Embeding size:

Zero vector

Missing data replacement:

Tokens (Tokenizer 1)

Input selection:

Close Vizualization

Cosine similarity

DISTANCE MEASURE

2

NUMBER OF GROUPS

Export as image

Figure 26: ANGLEr showcase UI (proposal).

[7] Ide, N., Romary, L.: International standard for a linguistic annotation framework. Natural language
engineering 10(3-4), 211–225 (2004)

[8] Knez, T., Bajec, M., Žitnik, S.: Angler: A next-generation natural language exploratory framework.
In: International Conference on Research Challenges in Information Science. pp. 761–768. Springer
(2022)

[9] Manning, C.D., Surdeanu, M., Bauer, J., Finkel, J.R., Bethard, S., McClosky, D.: The stanford
corenlp natural language processing toolkit. In: Proceedings of 52nd annual meeting of the associa-
tion for computational linguistics: system demonstrations. pp. 55–60 (2014)

22

ANGLEr blueprints and design RSDO DS3 A3.2, Deliverable R3.1.2

[10] Meystre, S.M., Lee, S., Jung, C.Y., Chevrier, R.D.: Common data model for natural language
processing based on two existing standard information models: Cda+graf. Journal of Biomedical
Informatics 45(4), 703–710 (2012). https://doi.org/https://doi.org/10.1016/j.jbi.2011.11.018, trans-
lating Standards into Practice: Experiences and Lessons Learned in Biomedicine and Health Care

[11] Nance, J., Baumgartner, P.: gobbli: A uniform interface to deep learning for text in python. Journal
of Open Source Software 6(62), 2395 (2021)

[12] Qi, P., Zhang, Y., Zhang, Y., Bolton, J., Manning, C.D.: Stanza: A python natural language
processing toolkit for many human languages. In: Proceedings of the 58th Annual Meeting of the
Association for Computational Linguistics: System Demonstrations. pp. 101–108 (2020)

23

	Introduction
	Existing frameworks review
	General Architecture for Text Engineering (GATE)
	Unstructured Information Management Applications (UIMA)
	Orange - Data Mining Fruitful and Fun
	Textable
	Natural language processing programming libraries
	Side-by-side comparison

	Towards a common and general data model for natural language processing tools
	NLP Interchange Format (NIF) data model
	GATE data model
	UIMA data model
	Orange data model
	Stanza data model

	ANGLEr data model (proposal)
	Versioning

	ANGLEr framework architecture (proposal)
	The module API
	Docker-based architecture
	ANGLEr graphical user interface (proposal)
	A use case scenario

	Final thoughts
	Acknowledgements

